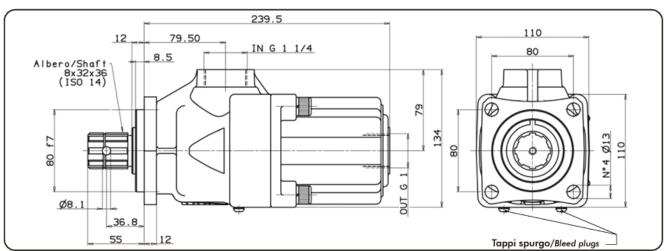


PISTON PUMPS

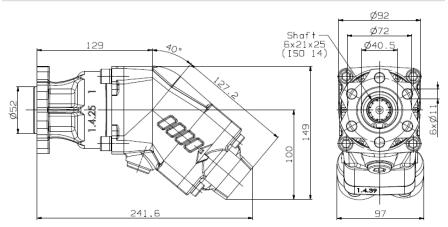
DARK Series Straight Axial Piston Pumps UNI - 21cc to 60cc	4.1
DARK Series Straight Axial Piston Pumps ISO - 21cc to 60cc	4.2
HDS Series Bent Axis Piston Pumps UNI – 12cc to 34cc	4.3
HDS Series Bent Axis Piston Pumps UNI – 40cc to 64cc	4.4
HDS Series Bent Axis Piston Pump ISO – 12cc to 34cc	4.5
HDS/MDS Series Bent Axis Piston Pump ISO – 40cc to 80cc	4.6
HDS/MDS Series Bent Axis Piston Pump ISO – 84cc to 130cc	4.7
HDT Series Bent Axis Piston Pump ISO – 75cc to 108cc	4.8
TWIN FLOW HDS Series Bent Axis Piston Pump ISO	4.9
HDS Series Bypass Valve – 12cc to 34cc	4.11
HDS/MDS/HDT Series Bypass Valve – 40cc to 130cc	4.13
TWIN FLOW Bypass Valve	4.15
PPV Series ISO Variable Piston Pumps	4.17

1800 022 831



Pump type	Code	Displacement	Pressure 		Max speed	Weight	
		Disple	Мах	Peak			
		cm³/rev	bar	bar	rpm	kg	
DARK-21	10800502111	20,25				13,9	
DARK-28	10800502817	27					13,9
DARK-35	10800503512	33,75	250	400	1000	13,8	
DARK-42	10800504217	40,5	350	400	1800	13,7	
DARK-48	10800504815	47,25	1			13,6	
DARK-52	10800505216	51,97	Ī			13,6	
DARK-55	10800505510	54	200	050	1500	13,5	
DARK-60	10800505912	59,3	300	350	1500	13,4	

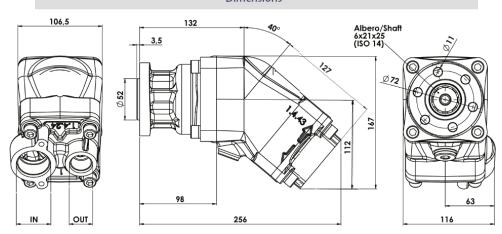
1800 022 831



Pump type	Code	Displacement	Pressure		Max speed	Weight
		Disple	Max	Peak		
		cm³/rev	bar	bar	rpm	kg
DARK-21	10800502120	20,25				14,8
DARK-28	10800502826	27				14,5
DARK-35	10800503521	33,75	350	400	1900	14,4
DARK-42	10800504226	40,5	350	400	1800	14,3
DARK-48	10800504824	47,25				14,2
DARK-52	10800505225	51,97				14,2
DARK-55	10800505529	54	200	050	1500	14,2
DARK-60	10800505921	59,3	300	350	1500	14,2

1800 022 831

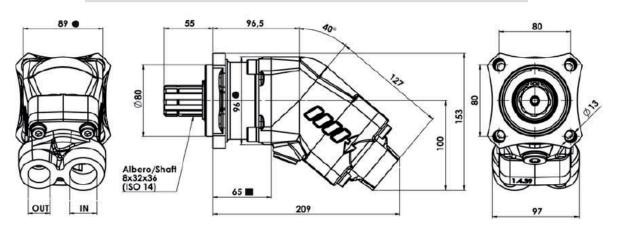
	TECHNICAL FEATURES										
Pump type	Displacement	Pres	sure		Min. speed	Weight					
	cm³/rev	P1 bar	P3 bar	V0 rpm	V1 rpm	V2 rpm	rpm	kg			
HDS-12 HDS-17 HDS-25 HDS-34	12.62 16.98 25.12 33.80	350	400	3000	2300	3000	300	8,3 8,3 8,4 8,3			


P1=Max. continuous pressure (100%) P3=Max. peak pressure (6 sec.max) V0=Max. continuous speed without load V1=Max. continuous speed V2=Max. intermittent speed

Pump type	Rote	Rotation				OUT
	Right	Left	ISO 228	ISO 228	SAE	SAE
HDS-12	60600210123	60600210129				
HDS-17	60600210173	60600210179	C 1	G 3/4		
HDS-25	60600210253	60600210259	G1 G3	I G 3/4		
HDS-34	60600210343	60600210349				

1800 022 831

	TECHNICAL FEATURES										
Pump type	Displacement Pressure Speed				Min. speed	Weight					
		P1	Р3	V0	V1	V2	1				
	cm³/rev	bar	bar	rpm	rpm	rpm	rpm	kg			
HDS-40	41.25	350	400					11,6			
HDS-47	47.13	350	400	2700	1900	2500	200	11,7			
HDS-55	56.70	320	340	2700	1900	2500	300	11,6			
HDS-64	63.56	280	300					11,5			


(100%) P1 = Max. continuous pressure P3 = Max. peak pressure (6 sec.max) V0=Max. continuous speed without load V1=Max. continuous speed V2=Max. intermittent speed

Pump type	Rota	Rotation I				
	Right	Left	ISO 228	ISO 228	SAE	SAE
HDS-40	60600210403	60600210409				
HDS-47	60600210473	60600210479	C 1 1 / 4"	C 2 / 4"		
HDS-55	60600210553	60600210559	G 1 1/4'	G 3/4		
HDS-64	60600210643	60600210649				

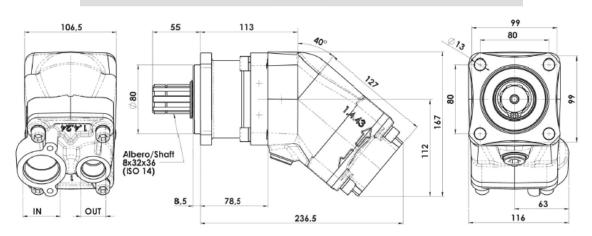
1800 022 831

	TECHNICAL FEATURES											
Pump type	Displacement	isplacement Pressure Speed			Min. speed	Weight						
	cm³/rev	P1 bar	P3	V0 rpm	V1 rpm	V2 rpm	rpm	kg				
HDS-12 HDS-17 HDS-25 HDS-34	12.62 16.98 25.12 33.80	350	400	3000	2300	3000	300	8.8 8.6 8,8 8,6				

P1=Max. continuous pressure (100%)

P3=Max. peak pressure

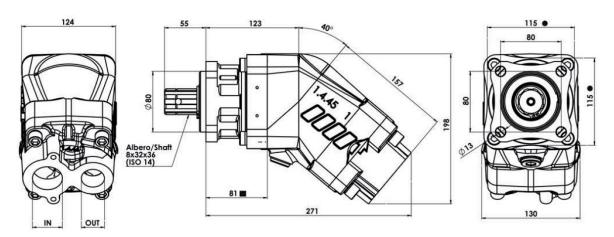
(6 sec.max)


V0=Max. continuous speed without load V1=Max. continuous speed V2=Max. intermittent speed

Pump type	Roto	Rotation			IN	OUT
	Right	Left				
			ISO 228	ISO 228	SAE	SAE
HDS-12	60100110123	60100110129	G 1	G 3/4		
HDS-17	60100110173	60100110179	G 1	G 3/4		
HDS-25	60100110253	60100110259	G 1	G 3/4		
HDS-34	60100110343	60100110349	G 1	G 3/4		

1800 022 831

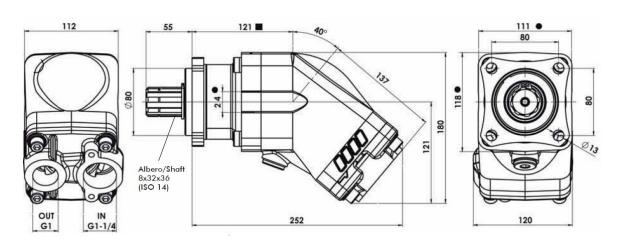
	TECHNICAL FEATURES																		
Pump type	Displacement	Pres	sure		Speed			Weight											
	cm³/rev	P1 bar	P3 bar	V0 rpm	V1 rpm	V2 rpm	rpm	kg											
HDS-40	41.25																		
HDS-47	47.13	350	250	250	250	250	250	250	250	250	250	250	250	400	2700	1900	2500		12,3
HDS-55	56.70		400	2700	1900	2500	300												
HDS-64	63.56							12,1											
MDS-80	77.25	250	300	2300	1800	2100		12											


P1= Max. continuous pressure (100%) P3= Max. peak pressure (6 sec.max) V0=Max. continuous speed without load V1=Max. continuous speed V2=Max. intermittent speed

Pump type	Roto	ution	IN	оит
	Right	Left	ISO 228	ISO 228
HDS-40	60100110403	60100110409		
HDS-47	60100110473	60100110479		
HDS-55	60100110553	60100110559	G 1 1/4"	G 3/4"
HDS-64	60100110643	60100110649		
MDS-80	60300110803	60300110809		

1800 022 831

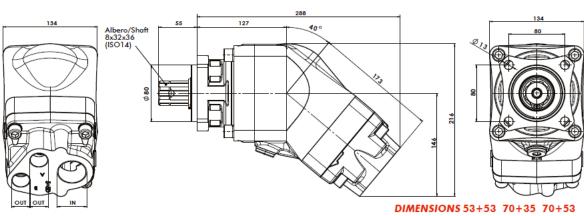
	TECHNICAL FEATURES											
Pump type	Displacement	Pressure			Min. speed	Weight						
		P1	Р3	V0	V1	V2						
	cm ³ /rev	bar	bar	rpm	rpm	rpm	rpm	kg				
HDS-84	84.33				1500			19.2				
HDS-108	107	350	400		1500			18.6				
HDS-130	131.62			2300	1750	2000	300	18.3				
MDS-120	122.1	260	280		1500			18.4				
MDS-130	131.62	250	270		1500			18.7				


P1=Max. continuous pressure (100%) P3=Max. peak pressure (6 sec.max) V0=Max. continuous speed without load V1=Max. continuous speed V2=Max. intermittent speed

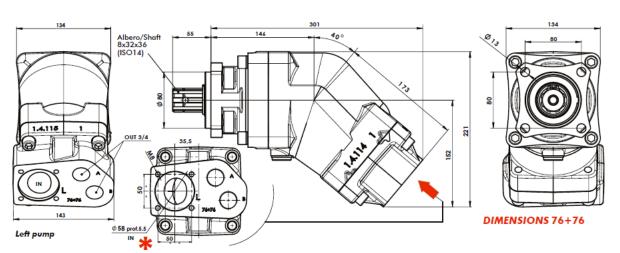
Pump type	Rote	ation	IN	OUT
	Right	Left	ISO 228	ISO 228
HDS-84	60100110843	60100110849	G 1 1/4"	
HDS-108	60100111083	60100111089		
HDS-130	60100111303	60100111309	G 1 1/2"	G 1"
MDS-120	60300111203	60300111209	G 1 1/2	
MDS-130	60300111303	60300111309		

1800 022 831

	TECHNICAL FEATURES							
Pump type	Displacement	Pressure		Speed			Min. speed	Weight
		P1	l P3	V0	V1	V2	1	
	cm ³ /rev	bar	bar	rpm	rpm	rpm	rpm	kg
HDT-75	75,5							14,9
HDT-84	84,2	350	370	2300	1500	2000	300	14,7
HDT-96	95.5	330	3/0	2300	1500	2000	300	14,7
HDT-108	107							14,5


P1 = Max. continuous pressure (100%) P3=Max. peak pressure (6 sec.max) V0=Max. continuous speed without load V1=Max. continuous speed V2=Max. intermittent speed

Pump type	Rotation		IN	OUT
	Right	Left	ISO 228	ISO 228
HDT-75	60200110753	60200110759		
HDT-84	60200110843	60200110849	G 1 1/4"	C 1"
HDT-96	60200110963	60200110969		G 1"
HDT-108	60200111083	60200111089		



1800 022 831

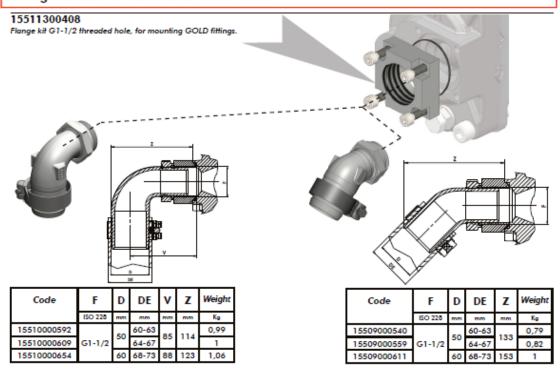
DIMENSIONS 53+53 70+35 70+55

1800 022 831

Pump type	Rotation	Code	Rear cover*	IN ISO 228	OUT ISO 228	Weight
TWIN FLOW 53+53	Right	60400115053	50002995307	C 1 1/4//		01.5
IMIN FLOW 53+53	Left 60400115059 50002995405		50002995405	G 1 1/4"		21,5 kg
TWIN FLOW 70+35	Right	60400117033	50002997001	C 1 1/4//		01.5
IWIN FLOW 70+35	Left	60400117039	50002997109	G 1 1/4"	G 3/4"	21,5 kg
TWIN FLOW 70+53	Right	60400117053	50002997403	G 1 1/2"	G 3/4	22.1.
IWIN FLOW 70+53	Left	60400117059	50002997501	G 1 1/2		22,1 kg
TWIN FLOW 76+76	Right	60400117673	50002997618	Ø58 🗱		24.41
IWIN FLOW 76+76	Left	60400117679	50002997609	258		24,4 kg

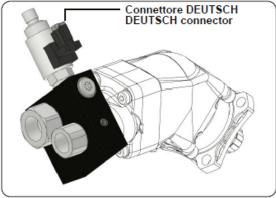
^{*} To change the pump rotation, the rear body must be replaced.

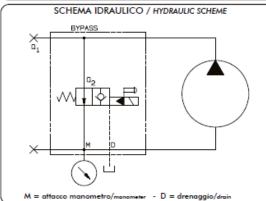
TECHNICAL FEATURES	53+53	70+35	70+53	76+76
Displacement (cc/rev)	53	36.5	53	75.1
Displacement (cc/rev)	55	68.3	66.2	74.8
Max. continuous pressure (bar)	350	350	300	300
Max. peak pressure (bar)	400	400	350	350
Max. speed without load (rpm)	2550	2550	2550	2550
Max. speed with load on A and B outputs (*)	1800	1800	1650	1500
Max. speed with load on 1 output only (*)	2100	2100	2100	2100
Max. continuous power (kW)	111	108	98	110
Max. intermittent power (kW)	127	123	114	129


Max. continuous pressure (1009) Max. peak pressure (6 sec

(100%) (6 sec.max) (*) Speed with pipe internal diameter 63mm (2"1/2) minimum.

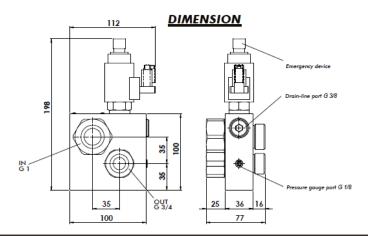
Pump 53+53 and 70+35: with pipe internal diameter 50mm (2") max. speed 1200rpm.


Pump 70+53: only with pipe internal diamater 63mm (2"1/2).

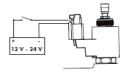

Fittings suitable for TWINFLOW 76+76 ONLY

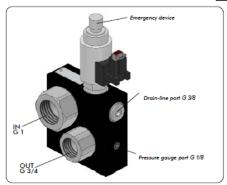
1800 022 831

The bypass valve is used together with HDS bent axis piston pumps if the pump turns constantly when the vehicle is on (in installations with the power takeoff without a coupling or coupled directly to the motor). In such cases, all the oil flow delivered is circulated, at the maximum pump capacity permitted by the turning speed of the motor, through piping that is usually not sized for capacities greater than those required for the normal use of the pump, consequently giving rise to pointless energy losses and overheating in the system. The bypass valve serves the purpose of partially recirculating the pump's oil flow Q (see diagram 1) inside the pump so that a flow Q1 (corresponding to the difference between the total flow Q and the recycled flow Q2) circulates through the system's piping. The proportion of total capacity distributed to the flows Q1 and Q2 depends on the system load losses and the bypass valve. In any case, it is essential to guarantee an oil flow Q1 of at least 5-10 I/min to ensure adequate pump cooling.

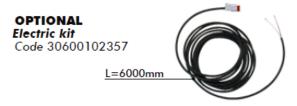

Pump type	Order code		Max. pressure	Enclosure	Coil power
	12V	24V			
HDS-12 HDS-17 HDS-25 HDS-34	10820012345	10820024341	400 bar ☆	I P 66	24W

See pumps catalogue for related pressure values.




1800 022 831

TIGHTENING TORQUE				
G 1/2	80Nm			
G 3/4	140Nm			
G 1	170Nm			
G 1 1/4	200Nm			
G 1 1/2	250Nm			



MOUNTING INSTRUCTIONS

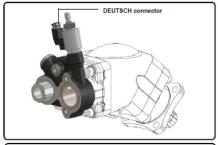
- 1 Clean the pump and by-pass valve surfaces.
- 2 Place the o-ring included in the kit as shown in the picture, with grease.
- 3 Screw in **X** part and **Y** part (see tightening torque in the table).
- 4 Connect pressure/suction pipe.
- 5 Electrical wiring-up: the by-pass valve is normally open. To deliver oil you have to energise the solenoid valve.

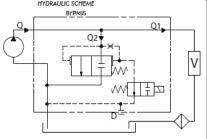
OPTIONAL

2-Pole female connector DEUTSCH Code 13104500045

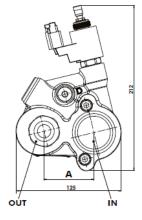
WARNING

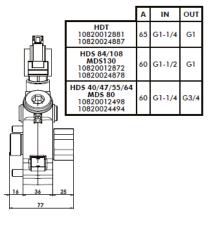
The solenoid valve is operated by an electric switch situated in the cab. The bypass valve is normally used in systems with an open-center main distributor.

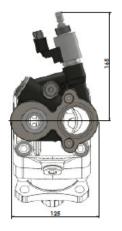


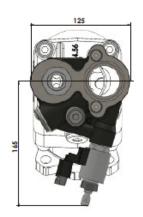

If it is used in systems with a closed-center distributor, or if it is impossible to guarantee the minimum flow rate of 5-10 I/min (Q1) through the piping, it becomes necessary to connect a pipe drain valve hole and the tank.

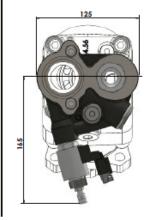
This emergency is "push and twist" type. The solenoid valve is complete with an emergency device so that the pump can be used even in the event of a solenoid valve malfunction. The valve can be used equally for pumps turning either to the right or to the left and it can be installed in two different positions, rotated through 180° so as to make best use of available space. A pressure gauge can be connected to the G 1/8 connection to enable pressure measurements.

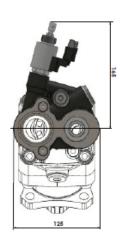

1800 022 831



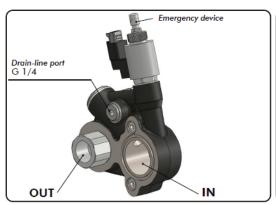

The bypass valve is used together with HDS-HDT bent axis piston pumps if the pump turns constantly when the vehicle is on (in installations with the power takeoff without a coupling or coupled directly to the motor). In such cases, all the oil flow delivered is circulated, at the maximum pump capacity permitted by the turning speed of the motor, through piping that is usually not sized for capacities greater than those required for the normal use of the pump, consequently giving rise to pointless energy losses and overheating in the system. The bypass valve serves the purpose of partially recirculating the pump's oil flow Q (see diagram 1) inside the pump so that a flow Q1 (corresponding to the difference between the total flow Q and the recycled flow Q2) circulates through the system's piping. The proportion of total capacity distributed to the flows Q1 and Q2 depends on the system load losses and the bypass valve. In any case, it is essential to guarantee an oil flow Q1 of at least 5-10 l/min to ensure adequate pump cooling.

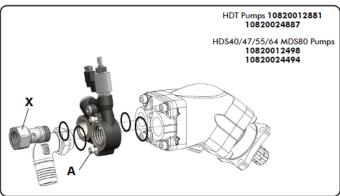

Pump type	Order code			Enclosure	Coil power
	12V	24V	Max	Ē	8
HDS-40 HDS-47 HDS-55 HDS-64 MDS-80	10820012498	10820024494			
HDS-84 HDS-108 HDS-130 MDS-130	10820012872	10820024878	400 bar	IP66	22W
HDT-75 HDT-84 HDT-96 HDT-108	10820012881	10820024887			

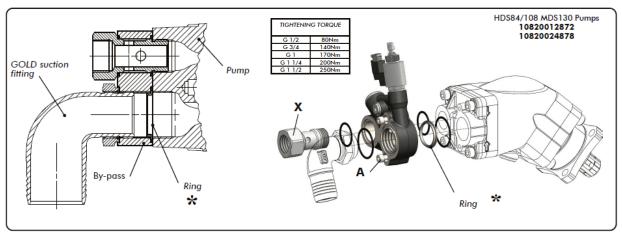




* See pumps catalogue for related pressure values.



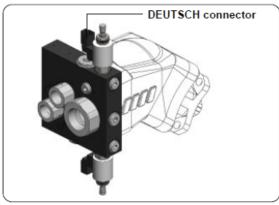


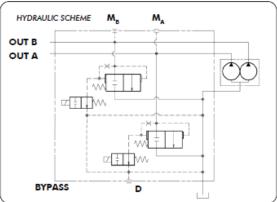


1800 022 831

MOUNTING INSTRUCTIONS

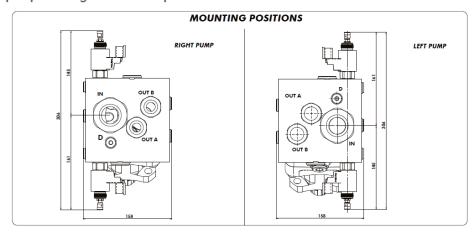
- 1 Clean the pump and by-pass valve surfaces.
- 2 Place the o-ring (and the ring 🔅 if present) included in the kit as shown in the picture, with grease.
- 3 Screw in the by-pass valve with included screws M8x40 (A) but without tightening.
- 4 Screw in old X part (see tightening torque in near table), tighten the screws M8x40 with torque 25 Nm checking that valve and rear cover surfaces are completely in contact each other.
- 5 Connect pressure/suction pipes, paying attention to use maximum length threaded fitting = 15mm.
- 6 Electrical wiring-up: the by-pass valve is normally open. To deliver oil you have to energies the solenoid valve.


The solenoid valve is operated by an electric switch situated in the cab. The bypass valve is normally used in systems with an open-center main distributor.

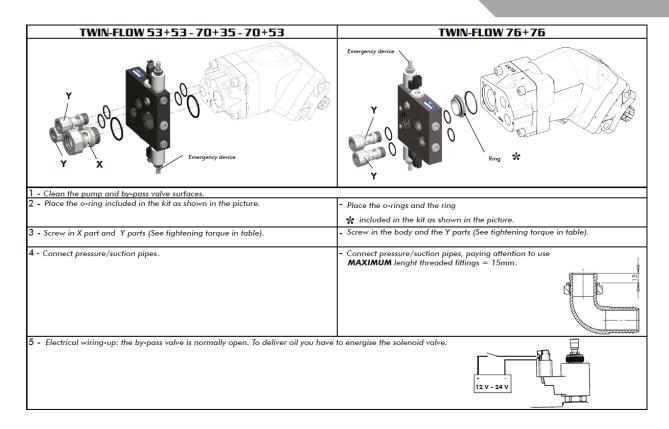


If it is used in systems with a closed-center distributor, or if it is impossible to guarantee the minimum flow rate of 5-10 I/min (Q1) through the piping, it becomes necessary to connect a pipe drain valve hole and the tank.

This emergency is "push and twist" type. The solenoid valve is complete with an emergency device so that the pump can be used even in the event of a solenoid valve malfunction. The valve can be used equally for pumps turning either to the right or to the left and it can be installed in two different positions, rotated through 180° so as to make best use of available space.



The bypass valve is used together with "TWIN FLOW" bent axis piston pumps if the pump turns constantly when the vehicle is on (in installations with the power takeoff without a coupling or coupled directly to the motor). In such cases, all the oil flow delivered is circulated, at the maximum pump capacity permitted by the turning speed of the motor, through piping that is usually not sized for capacities greater than those required for the normal use of the pump, consequently giving rise to pointless energy losses and overheating in the system. The bypass valve serves the purpose of partially recirculating, for each delivery, the pump's oil flow Q inside the pump so that a flow Q1 (corresponding to the difference between the total flow Q and the recycled flow Q2) circulates through the system's piping. The proportion of total capacity distributed to the flows Q1 and Q2 depends on the system load losses and the bypass valve. In any case, it is essential to guarantee an oil flow Q1 of at least 5-10 I/min to ensure adequate pump cooling.


F	Pump type	Order code		Max. pressure	Enclosure	Coil power
		12V	24V			
TV	WIN-FLOW 53+53 70+35	10820012541	10820024547	400 bar	IP 66	22W
TV	WIN-FLOW 70+53	10820012710	10820024716	*		
TV	WIN-FLOW 76+76	10820012765	10820024761			

* See pumps catalogue for related pressure values.

1800 022 831

OPTIONAL 2-Pole female connector DEUTSCH Code 13104500045

WARNING

The solenoid valves are operated by electric switches situated in the cab. The bypass valve is normally used in systems with an opencenter main distributor.

If it is used in systems with a closed-center distributor, or if it is impossible to guarantee the minimum flow rate of 5-10 l/min (Q1) through the piping, it becomes necessary to connect a 3/8" pipe between the valve's auxiliary connection and the tank (use the fitting G1/4 included in the package).

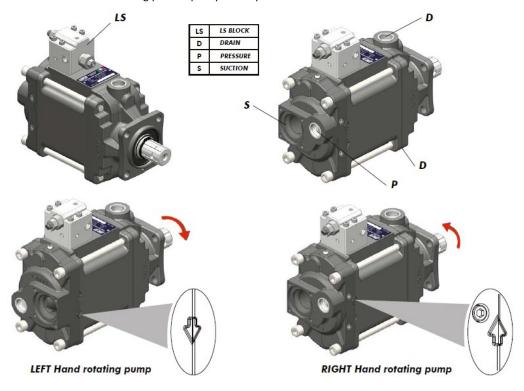
The solenoid valves are completed with an emergency device so that the pump can be used even in the event of a solenoid valves malfunction. The valve can be used equally for pumps turning either to the right or to the left and it can be installed in two different positions, rotated through 180° so as to make best use of available space.

A pressure gauge can be connected to the 3/8" connection to enable pressure measurements.

PPV ISO 60CC

PPV ISO 90CC

PPV ISO 110CC

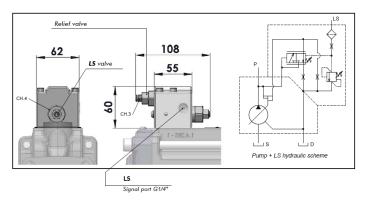

PPV ISO 130CC

	AVA	NILABLE CODES	
	CODE	DESCRIPTION	
	65011106LS6	PPV ISO 7653 32X36 BSP AX LS 060L	ΔΧΙΔΙ
	65011106LS1	PPV ISO 7653 32x36 BSP AX LS 060R	(STANDARD)
	65011106LS7	PPV ISO 7653 32x36 BSP AX LS 060L L	,
	65011106LS2	PPV ISO 7653 32x36 BSP AX LS 060R L	Adjustable
	65011206LS1	PPV ISO 7653 32X36 BSP RV LS 060R	
	65011206LS6	PPV ISO 7653 32X36 BSP RV LS 060L	Radial/vertical
	65011306LS1	PPV ISO 7653 32X36 BSP PV LS 060R	
	65011306LS6	PPV ISO 7653 32X36 BSP PV LS 060L	Tandem
	65011406LS1	PPV ISO 7653 32X36 BSP RO LS 060R	
PPV 60	65011406LS6	PPV ISO 7653 32X36 BSP RO LS 060L	Radial/horizontal
	65011506LS1	PPV ISO 7653 32X36 BSP PO LS 060R	
	65011506LS6	PPV ISO 7653 32X36 BSP PO LS 060L	Tandem
	00011000200	11 1 100 7 000 02 X 00 201 1 0 20 0002	AXIAL
	65125106LS1	PPV SAE C4 C-14T UNF AX LS 060R	(STANDARD)
	65125106LS2	PPV SAE C4 C-14T UNF AX LS 060R L	Adjustable
	65125106LS6	PPV SAE C4 C-14T UNF AX LS 060L	AXIAL (STANDARD)
	65125106LS7	PPV SAE C4 C-14T UNF AX LS 060L L	Adjustable
	65011109LS6	PPV ISO 7653 32x36 BSP AX LS 090L	AXIAL
	65011109LS1	PPV ISO 7653 32x36 BSP AX LS 090R	(STANDARD)
	65011109LS7	PPV ISO 7653 32x36 BSP AX LS 090L L	Adjustable
	65011109LS2	PPV ISO 7653 32x36 BSP AX LS 090R L	Adjustable
	65011209LS1	PPV ISO 7653 32X36 BSP RV LS 090R	Radial/vertical
PPV 90	65011209LS6	PPV ISO 7653 32X36 BSP RV LS 090L	Radial/Vertical
PPV 90	65011309LS1	PPV ISO 7653 32X36 BSP PV LS 090R	Tandem
	65011309LS6	PPV ISO 7653 32X36 BSP PV LS 090L	landem
	65011409LS1	PPV ISO 7653 32X36 BSP RO LS 090R	B 11 17 1 1 1
	65011409LS6	PPV ISO 7653 32X36 BSP RO LS 090L	Radial/horizontal
	65011509LS1	PPV ISO 7653 32X36 BSP PO LS 090R	
	65011509LS6	PPV ISO 7653 32X36 BSP PO LS 090L	Tandem
	65011111LS6	PPV ISO 7653 32x36 BSP AX LS 110L	AXIAL
	65011111LS1	PPV ISO 7653 32x36 BSP AX LS 110R	(STANDARD)
	65011111LS7	PPV ISO 7653 32x36 BSP AX LS 110L L	A.P 1.1
	65011111LS2	PPV ISO 7653 32x36 BSP AX LS 110R L	Adjustable
	65011211LS1	PPV ISO 7653 32X36 BSP RV LS 110R	B 11 17 31 1
	65011211LS6	PPV ISO 7653 32X36 BSP RV LS 110L	Radial/vertical
PPV 110	65011311LS1	PPV ISO 7653 32X36 BSP PV LS 110R	Tandem
PPV 110	65011311LS6	PPV ISO 7653 32X36 BSP PV LS 110L	landem
	65011411LS1	PPV ISO 7653 32X36 BSP RO LS 110R	Dardint/least-sect
	65011411LS6	PPV ISO 7653 32X36 BSP RO LS 110L	Radial/horizontal
	65011511LS1	PPV ISO 7653 32X36 BSP PO LS 110R	Tour days
	65011511LS6	PPV ISO 7653 32X36 BSP PO LS 110L	Tandem
	65121111LS1	PPV SAE C4 C-14T BSP AX LS 110R	AXIAL
	65121111LS6	PPV SAE C4 C-14T BSP AX LS 110L	(STANDARD)
	65011113LS2	PPV ISO 7653 32X36 BSP AX LS 130R	AVIAI
PPV 130	65011113LS7	PPV ISO 7653 32X36 BSP AX LS 130L	AXIAL
Adjustable	65011113PI2	PPV ISO 7653 32X36 BSP AX PI 130R	AVIAI
	65011113PI7	PPV ISO 7653 32X36 BSP AX PI 130L	AXIAL
	222		

1800 022 831

The OMFB variable displacement axial piston pump has a swash plate. The displacement of the pump depends on the stroke of the pistons, which is determined by the inclination of the swash plate. At the start, the pump is at its maximum displacement position because of the springs pushing against the swash plate. The displacement of the pump is reduced by means of two pistons hydraulically operated that win the force of the springs. The cylinder block rotates together with the shaft forcing the pistons to rotate at the same speed as the shaft and make a circular path on the swash plate that causes the reciprocating movement. In this way, the pump is able to deliver from the maximum to zero flow rate. The variation of the displacement is controlled by a regulator, which is fitted on the pump itself. These pumps are designed to operate in open circuits. They allow very quick reaction time and thanks to their compact size they can be coupled directly onto the PTOs of commercial vehicles. When ordering please specify the required direction of rotation.

TECHNICAL FEATURES	URES PPV6		PPV60 PPV90		PPV110		PPV130	
Flow	60 I/	min.	90 l/min.		110 l/min.		130 l/min.	
Max. swash plate angle			21,	5°				
Working pressure	Continuous	Intermittent	Continuous	Intermittent	Continuous	Intermittent	Continuous	Intermittent
TOTAING Pressure	375 bar	400 bar	375 bar	400 bar	375 bar	400 bar	375 bar	400 bar
Absolute inlet pressure required in open circuit			0,85 bar					
Max. permissible housing pressure (static/dynamic)	1 bar		3 bar					
Max. permissible inlet pressure (static/ dynamic)	2 bar							
Max. speed during suction operation and max. swash plate angle at 1 bar abs. Inlet pressure	2500 rpm		2300 rpm		2200 rpm		2100 rpm	
Max. speed with zero stroke and 1 bar abs. Inlet pressure				3000	rpm			
Min. speed in continuous operation	500 rpm							
Required drive torque at 100 bar	100	Nm	150	Nm	185	Nm	220	Nm
Drive power at 250 bar and 2000 rpm	53	kW	80	kW	100	kW	145	i kW
Weight	24	Ka	29	Ka	30	Ka	27	Ka


The ADJUSTABLE version consisetting screw that limits the max of the pumps to lower values the one.	displacement				
DISPLACEMENT 60cc					
Displacement limitation range	40 - 60 cm ³				
Displacement limitation range	4,3 cm ³ /rev				
DISPLACEMENT 90cc					
Displacement limitation range	55 - 90 cm ³				
Displacement limitation range	5,7 cm³/rev				
DISPLACEMENT 110cc					
Displacement limitation range	85 - 110 cm ³				
Displacement limitation range	6,6 cm³/rev				
DISPLACEMENT 130cc					
Displacement limitation range	90 - 130 cm ³				
Displacement limitation range	12 cm³/rev				

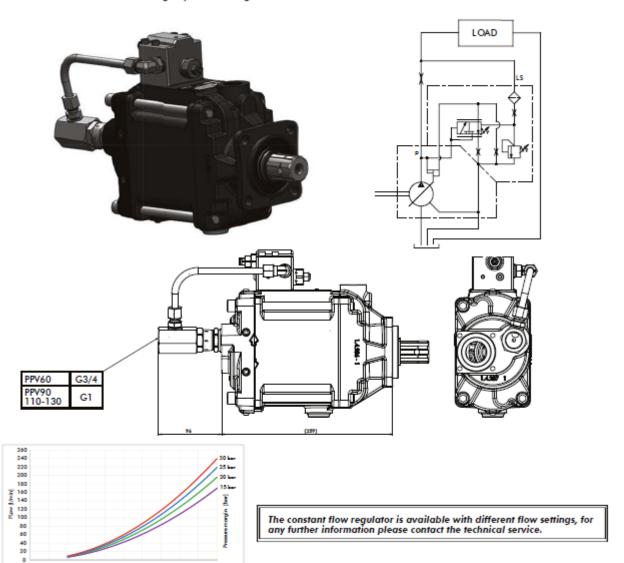
1800 022 831

LS LOADING SENSING CONTROL

Regulate the differential pressure Δp = circuit pressure less signal pressure. The adjustment range is 15-50 bar. The default setting is 25 bar $\pm 2\%$. Setting 15 bar/rev.—Adjust the maximum pressure of the hydraulic circuit between 20 and 350 bar. The default setting of the pressure relief valve is 330 bar. Setting 150 bar/rev. The capacity of the LS line has to be adapted to the related hydraulic circuit. The signal line should preferably consist of a flexible hose having a suitable diameter to ensure the damping of possible LS signal fluctuations.

FLUSHING VALVE FOR LOAD SENSING CIRCUIT

The valve guarantees a small flow through the pump to the cooling or tank, in order to protect the pump from overheating on the application for a long time in standby condition. When a load-sensing valve function is engaged the flushing valve is disengaged automatically with a hydraulic pilot or with an electrical pilot by the logic control of the customer.


Pilot pressure settings: da 2 a 25 bar Maximum pressure: 420 bar		
Hydraulic pilot	Electrical pilot	
Code	Code	
B5001072001BC	B5001072002BC	24V DIN
	B5001072003BC	12V DIN
	B5001072004BC	24V DEUTCH
	B5001072005BC	12V DEUTCH
LS SIGNAL IN	TANK	
Main valve	Ø=	Main valve

1800 022 831

CONSTANT FLOW CONTROL

The constant flow control guarantee a fixed flow rate at different pump speed and load. The regulator keeps the pressure margin across the orifice into P line. Setting of pressure margin: 15 to 40 bar.

1800 022 831